130,358 research outputs found

    A spectral projection method for transmission eigenvalues

    Full text link
    In this paper, we consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides if the region contains eigenvalue(s) or not. It is particularly suitable to test if zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.Comment: The paper has been accepted for publication in SCIENCE CHINA Mathematic

    Pattern selection as a nonlinear eigenvalue problem

    Full text link
    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in: Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann (Springer, Berlin, 1996

    Generalized elliptic functions and their application to a nonlinear eigenvalue problem with pp-Laplacian

    Get PDF
    The Jacobian elliptic functions are generalized and applied to a nonlinear eigenvalue problem with pp-Laplacian. The eigenvalue and the corresponding eigenfunction are represented in terms of common parameters, and a complete description of the spectra and a closed form representation of the corresponding eigenfunctions are obtained. As a by-product of the representation, it turns out that a kind of solution is also a solution of another eigenvalue problem with p/2p/2-Laplacian.Comment: 17 page

    Localization theorems for nonlinear eigenvalue problems

    Full text link
    Let T : \Omega \rightarrow \bbC^{n \times n} be a matrix-valued function that is analytic on some simply-connected domain \Omega \subset \bbC. A point λ∈Ω\lambda \in \Omega is an eigenvalue if the matrix T(λ)T(\lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.Comment: Submitted to SIMAX. 22 pages, 11 figure
    • …
    corecore